
Step 5. Moving the line of integration.

Now we can deduce

Theorem 6.33
∫ x

1

ψ(t) dt =
1

x
x2 +O

(

x2E(x)
)

, (40)

where E(x) = exp
(

−c log1/10 x
)

for some constant c > 0.

Look back in the Problem Sheets where is was shown that

x−δ ≤ exp
(

−c log1/10 x
)

≤ (log x)−A ,

for any δ > 0 and A > 0. Think of δ as small and A as large, so this says
that E(x) tend to 0 slower than x−δ however small δ might be, but tends to
0 quicker than (log x)−A, however large A might be.

Proof Recall the fundamental
∫ x

1

ψ(t) dt =
1

2
x2 −

1

2πi

∫ c+i∞

c−i∞

F (s)
xs+1ds

s (s+1)
+O (x) ,

for c > 1. With T ≥ 2 to be chosen, truncate the integral at ±T and estimate
the tail ends that are discarded by

∣

∣

∣

∣

∫ c+i∞

c+iT

F (s)
xs+1ds

s (s+1)

∣

∣

∣

∣

≤

∫

∞

T

|F (c+it)|
xc+1dt

|c+it| |c+1+it|
.

Both |c+ it| and |c+1+it| ≥ |t| while |F (c+it)| ≪ log9 t, so

∫

∞

T

|F (c+it)|
xc+1dt

|c+it| |c+1+it|
≪ xc+1

∫

∞

T

log9 t

t2
dt

≪
x1+c log9 T

T
. (41)

(Recall the ‘trick’ explored in a problem sheet of estimating such integrals
by splitting at T 2 and estimating each part separately.) In (41) choose c =
1 + 1/ log x when

x1+c = x2+1/ log x = x2elog x/ log x = ex2

and the error (41) is thus ≪ x2T−1 log9 T. This leaves us with the integral
along the vertical straight line from c− iT to c+ iT .
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Next let C be the contour around the rectangle with corners at c−iT, c+iT ,
1−δ(T )+iT and 1−δ(T )−iT , where δ(T ) = A/ log9 T . Here A is a constant
chosen sufficiently small so that

A

log9 T
≤

1

219 (log T + 6)9
.

Then ζ(s) will have no zeros and thus F (s) no poles within or on this contour.
So, by Cauchy’s Theorem,

1

2πi

∫

C

F (s)
xs+1ds

s (s+1)
= 0.

That is

1

2πi

(

∫ c+it

c−iT

+

∫ 1−δ(T )+iT

c+iT

+

∫ 1−δ(T )−iT

1−δ(T )+iT

+

∫ c−iT

1−δ(T )−iT

)

F (s)
xs+1ds

s (s+1)
= 0.

In both integrals over the horizontal paths, from c+ iT to 1−δ(T )+iT and
from 1−δ(T )−iT to c− iT, we have |s (s+1)| ≥ T 2. Therefore these integrals
are bounded by

≪
(log T )9

T 2

∫ c

1−δ(T )

x1+σdσ ≪ (c− 1 + δ(T ))
x1+c log9 T

T 2
,

simply bounding the integral by length × largest value. This contribution is
dominated by (41).

Finally we have an integral on the vertical line from 1−δ(T )−iT to 1−
δ(T )+iT .

Let J1 be the integral of F (s) xs+1/s (s+1) over |t| ≤ 2 and J2 the integral
over 2 ≤ |t| ≤ T . Then in the first integral F (s) is bounded, by M , say, so

|J1| ≤

∫ 2

−2

Mx2−δ(T ) dt

(t+ 1)2
≪ x2−δ(T ).

While, from Corollary 6.30,

J2 ≪

∫ T

2

(log t)9 x2−δ(T )dt

t2
≪ x2−δ(T ),

since the integral over t converges. Combine all these bounds as

1

2πi

∫ c+i∞

c−i∞

F (s)
xs+1ds

s (s+1)
≪

x2 log9 T

T
+ x2−δ(T ). (42)

41



Choose T to equalise (or balance) these two terms up to logarithmic factors
(i.e. first forget about the log9 T factor), which requires T ≈ xδ(T ). Taking
logarithms,

log T ≈
A log x

(log T )9
.

i.e. T = exp
(

c log1/10 x
)

for some c. Then

x2−δ(T ) =
x2

T
= x2 exp

(

−c log1/10 x
)

. (43)

The other error term in (42) has the log9 T factor. Yet

log9 T =
(

c log1/10 x
)9

≪ exp
(

ε log1/10 x
)

for any ε > 0 (just take logarithms of both sides to see this). Then

x2 log9 T

T
≤ x2 exp

(

− (c− ε) log1/10 x
)

,

which is of the same form as (43) but with a slightly smaller constant c.

Collecting together we conclude that

1

2πi

∫ c+i∞

c−i∞

F (s)
xs+1ds

s (s+1)
≪ x2 exp

(

−c log1/10 x
)

,

for some constant c. �
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